Nearly equal distances and Szemerédi's regularity lemma

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nearly Equal Distances in the Plane

distances determined by them? In particular, what is the maximum number of pairs of points that determine the same distance? Although a lot of progress has been made in this area, we are still very far from having satisfactory answers to the above questions (cf. [EP], [MP], [PA] for recent surveys). Two distances are said to be nearly the same if they differ by at most 1. If all points of a set...

متن کامل

Nearly equal distances in metric spaces

Let (X, d) be any finite metric space with n elements. We show that there are two pairs of distinct elements in X that determine two nearly equal distances in the sense that their ratio differs from 1 by at most 9 logn n2 . This bound (apart for the multiplicative constant) is best possible and we construct a metric space that attains this bound. We discus related questions and consider in part...

متن کامل

Szemerédi’s Regularity Lemma

Szemerédi’s Regularity Lemma is an important result in extremal graph theory. Roughly speaking, the lemma states that every graph can be approximated by random graphs; that is, the vertex set of every graph can be split into equal size subsets such that the distribution of the edges between almost any two of these subsets is pseudorandom. The Regularity Lemma has already proved to be a powerful...

متن کامل

Szemerédi Regularity Lemma

Szemerédi’s Regularity Lemma is one of the few truly universal tools in modern combinatorics, with numerous important applications. In particular, this lemma is the cornerstone of the theory of convergent sequences of dense graphs launched recently by Lovász and Szegedy [15], Borgs, Chayes, Lovász, Sós and Vesztergombi [3], [4] and Borgs, Chayes and Lovász [5]. The germ of a similar theory for ...

متن کامل

An Abstract Regularity Lemma

We extend in a natural way Szemerédi’s Regularity Lemma to abstract measure spaces. 1 Introduction In this note we extend Szemerédi’s Regularity Lemma (SRL) to abstract measure spaces. Our main aim is to …nd general conditions under which the original proof of Szemerédi still works. Another extension of SRL to probality spaces was proved by Tao [3], but his results do not imply our most general...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Geometry

سال: 2006

ISSN: 0925-7721

DOI: 10.1016/j.comgeo.2005.06.002